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Abstract—Recent contributions to the field of Reinforcement
Learning (RL) have been concerned with the learning of skills,
diverse behaviors of the agent that can be chosen by setting the
values of latent variables which the policy is conditioned on.
While some approaches omit the task reward during training,
making it simply learn diverse behaviors, other approaches seek
to train the agent to maximize the task reward in diverse
manners. This work goes into detail on three recent approaches
to diverse skill learning and examines the differences and similar-
ities in the foundations and objectives. Finally, the experimental
setups are discussed as well as which skills are manifested in the
agents’ behaviors.

I. INTRODUCTION

Deep reinforcement learning (RL) algorithms have shown
remarkable results in robotic control applications [1, 2, 3, 4]
and games [5, 6]. While recent successes in deep RL have
been largely driven by high-fidelity function approximators
and increasingly sample-efficient training algorithms, a
trained policy for one objective rarely adapts well to new
objectives or even to small environment variations given the
same agent [7]. To mitigate this, the idea of learning diverse
skills seeks to train policies which give the agent general
abilities to perform well under changing environments and
agent dynamics. Learning such skills promises improved
exploration in environments with sparse rewards, as well as
an increased robustness of learned policies.

In this work, three recent approaches to learning diverse
skills are examined: Diversity is All You Need
by Eysenbach et al. (2018, [8]), One Solution is
Not All You Need by Kumar et al. (2020, [9]),
and Discovering Diverse Solutions in Deep
Reinforcement Learning by Osa et al. (2021, [10]).
These approaches make use of latent-conditioned policies -
policies that can be adapted by setting the values of a set of
latent variables z. During training, the policy is conditioned
such that the agent performs distinct styles of movement for
different values of z. In this context, the term skill refers to
the latent variable z as well as the policy conditioned on
z. This work seeks to present the three approaches and to
elaborate on consistencies and differences in the mathematical
and algorithmic choices.

II. BACKGROUND

All three approaches assume an RL problem under a
Markov decision process (MDP) which can be represented by

a tuple (S,A, P, r, γ, ξ), where S is the state space, A is the
action space, r(s,a) is the reward function given an action
a and state s, γ is the reward discount factor, and ξ is the
initial state distribution. P (s′|s,a) provides the state transition
probability, with s′ representing the state at the time-step after
s. The common goal is to learn a policy which maximizes the
expected sum of discounted rewards

R(π) = E[R0|π] where Rt =

T∑
k=t

γk−tr(s,a). (1)

This policy is modeled with a neural network with weights
θ and is denoted πθ, or π for short. The papers base their
algorithm for learning the policy on the soft actor-critic (SAC)
algorithm [11], which is an off-policy and model-free algo-
rithm that reuses previously collected data for optimization and
includes an entropy-maximization bonus for stability and to
encourage exploration. The policy π is modeled as a factored
Gaussian, meaning that the neural network that represents the
policy samples the action a from a learned mean and standard
deviation given the network inputs s and z. A noise variable
ε models the stochasticity of the policy and can be fixed to
zero in order to make the policy deterministic. The following
definition includes the latent variable z to match the notation
in the presented approaches

a = µθ(s, z) + εσθ(s, z), ε ∼ N (0, 1). (2)

Osa et al. [10] additionally implement their latent-variable
conditioned algorithm based on TD3 [12], whereas [8, 9] only
provide a SAC-based implementation. In order to compare
the three approaches on the same grounds, the TD3-based
algorithm in [10] is disregarded in the further dissemination.

III. FORMULATION OF MUTUAL INFORMATION VIA A
VARIATIONAL LOWER-BOUND

The policy conditioned on the latent variable π(a|s, z) is
incentivized to have a high mutual information between the
skill and the trajectories of the agent. The mutual information
I(X,Y ) between two random variables is a measure for how
much knowledge of Y can be obtained by only knowing X ,
and vice-versa. At both extremes, the mutual information is
zero if X and Y are independent, and maximal if X is a
deterministic function of Y , and vice-versa. In the context of
skills and trajectories, the mutual information is maximized so
that the skill value z is a strong predictor of which trajectories
the agent will take in the environment. Eysenbach et al. [8]
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and Kumar et al. [9] seek to achieve this by maximizing the
mutual information between the state and the latent variable
I(s; z) for a given policy. A simultaneous minimization of
the mutual information I(a; z|s) should ensure that skills
are distinguished by states and not by actions. Finally, the
policy should have a high entropy for actions at a given
state H(a|s), a concept which is introduced by SAC [11] to
capture multiple modes of near-optimal behavior. This entropy
term keeps the probability density function of a SAC policy
from collapsing to a single action value for a given state if
multiple actions promise a high return. Together, the following
objective is formulated and subsequently transformed into
a sum of entropy terms using the relationship I(Y ;X) =
I(X;Y ) = H(X) − H(X|Y ) and the definition of entropy
H(X) = −E[log p(X)]

I(s; z) +H(a|s)− I(a; z|s)
= (H(z)−H(z|s)) +H(a|s)− (H(a|s)−H(a|s, z))

= H(a|s, z)−H(z|s) +H(z)

= H(a|s, z) + E(s,z)∼pπ [log p(z|s)] +H(z). (3)

Here, Eysenbach et al. [8] state that the distribution p(z|s)
cannot be computed directly and instead use Jensen’s inequal-
ity to show that approximating p(z|s) with a learned discrim-
inator qφ(z|s) yields a lower bound to the objective, called
a variational lower bound. This discriminator is represented
by a neural network with weights φ. As their approach is
based on SAC [11], there is already a mechanism in place
that maximizes the entropy of the policy w.r.t. the actions, so
that the term H(a|s, z) is removed from the objective

(3) = H(a|s, z) + E(s,z)∼pπ [log p(z|s)] +H(z)

= H(a|s, z) + Es∼β(s)[DKL(p(z|s)‖qφ(z|s))]︸ ︷︷ ︸
≥0

+ E(s,z)∼pπ [log qφ(z|s)] +H(z)

≥ H(a|s, z) + E(s,z)∼pπ [log qφ(z|s)] +H(z)

≥ E(s,z)∼pπ [log qφ(z|s)] +H(z). (4)

Osa et al. [10], on the other hand, maximize I(s,a; z),
thus including the action into the term in order to ”encode
the diversity of actions for a specified state into the latent
variable” [10, Sec. 4.1]. Here as well, the term for the
mutual information is split up and the distribution p(z|s,a) is
approximated with a learned discriminator qφ(z|s,a) which
lower-bounds the objective in the same way (compare Eq. (4)),
motivated in the inability to compute p(z|s,a) directly

I(s,a; z) = H(z)−H(z|s,a)

= E(s,a,z)∼pπ [log p(z|s,a)] +H(z)

≥ E(s,a,z)∼pπ [log qφ(z|s,a)] +H(z). (5)

Despite starting out with very different objectives and
motivations for maximizing the mutual information, the
approaches in Equations (4) and (5) only differ in the
arguments to the discriminator qφ. In addition, all three
papers maximize the skill entropy H(z) by setting p(z) as
a uniform distribution, meaning that z is sampled from a
uniform distribution at the beginning of each training episode.

Being based on the off-policy SAC algorithm, previously
collected data from the replay buffer B can be used for
maximizing the objectives.

Regarding the latent variable vector, [8, 9] confine z to
discrete values, whereas [10] uses both continuous and
discrete latent variables. While [8, 9] don’t elaborate on their
decision, Osa et al. [10] draw connections to infoGAN [13]
where continuous latent variables can be used to adjust the
output of written digits in a continuous manner, allowing fine
adjustments to the rotation and the line width.

IV. OBJECTIVES TO FACILITATE DIVERSE SKILL
LEARNING

Building on the very similar objectives of mutual informa-
tion maximization, the three papers diverge in their formula-
tion of the optimization problems. Eysenbach et al. [8] empha-
size their work on learning skills without a reward function.
Here, the reward given by the environment is replaced with a
pseudo-reward which is formulated from the variational lower
bound in Eq. (4), yielding

r̃(s,a) = log qφ(z|s) +H(z). (6)

Maximizing this pseudo-reward causes the agent to visit
different states for different values of the discrete latent
variables, resulting in movements which are not directed
to solve a specific task, as no task reward is given during
training. This can result in an agent which has no useful
skills, i.e. doesn’t achieve a substantial task reward at
test-time. For agents whose movements are restricted to
a plane, which is the case in the Hopper or Half-Cheetah
environments, the randomly learned skills include useful
locomotive abilities, such as moving forward, backward or
in-place. The less restricted the environment becomes though,
the less likely it is for the learned skills to perform well
given a task reward. Eysenbach et al. [8] observe this in the
Ant environment where the agent fails to move in straight
lines. Here, the agent would likely not achieve a high task
reward when the goal is to move quickly in a certain direction.

Incorporating the same pseudo-reward (6) into their
optimization objective, Kumar et al. [9] seek to train
the agent so that it only possesses skills which also achieve
a near-optimal total task reward R(πθ) ≥ R(π∗) − ε so
that each skill is useful. Knowing the near-optimal total
task reward R(π∗) requires training a non-latent-variable
conditioned agent on the task beforehand. This substantially
increases the computational effort needed for this approach,
as two agents need to be trained in total. Kumar et al. [9] call
this approach the Structured Maximum Entropy RL (SMERL)
algorithm, which maximizes the objective in Eq. (1) using
the following reward, with α > 0, ε > 0, and the indicator
function I

rSMERL(s,a) = r(s,a) + αIR(πθ)≥R(π∗)−εr̃(s,a).

While this approach guarantees that the agent learns to
solve the given task well in many different ways, the agent
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will not adapt well to new tasks, as there is less diversity
in the skills. To provide an example: If a Half-Cheetah
is trained to move forward using SMERL, it will likely
learn to do so in different locomotive styles. If the reward
changes to encourage backwards movement however, the
agent will probably fail to do so, as all of the skills have
been conditioned on forward movement.

Diverging from the previous approaches, Osa et al. [10]
don’t incorporate the variational lower bound of the mutual
information as unsupervised rewards. Instead, they maximize
the objective (5) directly using back-propagation. This
is achieved by defining an objective Jinfo which is only
optimized every dinfo time steps

Jinfo(θ,φ) = E(s,z)∼B[W̃ log qφ(z|s,µθ(s, z))].

Where W and W̃ are the un-clipped and clipped importance
weights, respectively

W =
exp(mini=1,2Qi(s,µθ(s, z), z))∑

s̄,ā,z̄∈Bmini=1,2Qi(s̄, ā, z̄)
, (7)

W̃ = max(1− cclip,min(W, 1 + cclip)).

To compute Jinfo, the log likelihood of the discriminator is
calculated among a set of state-skill pairs which are sampled
from the replay-buffer B. For the corresponding action, the
mean of the Gaussian policy µθ(s, z) in Eq. (2) is calculated
so that a gradient can be calculated w.r.t. the weights of the
policy πθ. The policy itself is optimized every datr time-
steps according to the SAC loss-function for the actor. In the
experiments, Osa et al. [10] set datr = 2 and dinfo = 3 and
claim that reducing dinfo results in more diverse behaviors at
the cost of a lower average reward. Thus, the hyperparameters
dinfo and datr allow for a fine-tuning of this trade-off. For
dinfo → ∞ and datr = 1, the algorithm resembles SAC [11]
and no diverse skills are learned. Because the information
term isn’t included in the reward, [10] redefines the training
objective for the policy in Eq. (1) as

max
π,θ

(E[R|π] + Jinfo(π,θ)).

The importance weight in Equation (7) is reminiscent of a
softmax function and normalizes the expected return of the
current state, policy-mean and skill tuple (s,µθ(s, z), z). For
those tuples with a comparatively high expected return, the
value of the discriminator will have a more profound effect
on the gradient of the weights θ and φ when optimizing the
mutual information. This encourages the policy to learn diverse
skills that perform actions that promise high returns. Because
of this, the learned skills aim to achieve high rewards which
limits the agent’s ability to achieve high rewards when the task
changes, as discussed above in the case of SMERL [9].

V. EXPERIMENTS

The three algorithms are evaluated in the OpenAI Gym
[14] environments which use the MuJoCo physics engine
[15]. Eysenbach et al. [8] apply their algorithm to the Hopper,
Half-Cheetah and Ant environments in order to compare the

Fig. 1. Rewards of the trained, latent-variable conditioned policy compared
with a random policy [8, Fig. 6]. The agent receives no task reward during
training.

achieved rewards of the different skills to a random policy.
Their policies, which were trained without observance of
the environment reward, achieve a wide range of different
accumulated rewards across all skills. The achieved-rewards
histogram shown in Fig. 1 is distinct from that of a random
policy which shows that diverse skills are learned. The
histogram shows that the less constrained the movement of
the agent is, the fewer skills achieve a high task reward
in a given environment: While many Hopper skills reach a
substantially high reward, only relatively few Ant skills do.

Kumar et al. [9] evaluate their policies on the Half-Cheetah,
Hopper, and Walker2d environments with a modified task
reward function. In the Half-Cheetah environment, the
reward is maximized when the agent reaches a certain target
location. In the Hopper and Walker2d environments, the
reward encourages the agent to move at a specific speed. Osa
et al. [10] reward a specific, constant speed as well in the
Hopper, Walker2d, and Humanoid environments which they
evaluate their policy on. In the rewards of the unmodified
Gym environments, the term for velocity is not capped in
order to encourage high speeds. The reason why [9, 10] cap
the velocity reward is likely due to the indifference of skills
which achieve maximal velocity. A comparison can be made
with human sports competitions: In sprinting disciplines,
the movement styles of all competitors only show minute
variations. RL agents which are trained to achieve a velocity
as high as possible will have skills that are not easy to
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distinguish. In order to obtain visibly different locomotive
styles the velocity reward must thus be capped.

The further discussion of the experiments concerns the
few-shot robustness, a protocol introduced by Kumar et al.
[9] which evaluates the robustness of the learned policy to
perturbations of the agent dynamics and the environment.
The protocol works as follows: A policy is trained in a given
environment, modeled by the MDP M = (S,A, P, r, γ,µ).
Then, in order to evaluate the few-shot robustness, the agent
is placed into a new MDP M′ = (S,A, P ′, r′, γ,µ) with
identical state and action spaces as M. In this new MDP,
the agent is confronted with perturbations and is allowed
only a handful of training episodes k to adapt to the new
circumstances. In [9], the agent should achieve a high reward
with obstacles in its way, external forces applied to it joints, as
well as joint failures. Osa et al. [10] evaluate their algorithms
using the few-shot robustness protocol, but only in the
Walker2d environment and with different perturbations such
as changing the length of a single leg or moving the position
of the knee up or down the leg. The few-shot robustness is
compared with SMERL [9] given the same circumstances and
an outperformance of Osa et al.’s algorithm [10] is asserted.

But how are the skills manifested in the behavior of
the agents? This question is evaluated on the results of
the three approaches in the Hopper environment, the only
environment the three papers have in common. Describing
the effects of the different values of the latent variables on
the motion of the agent is impossible for Kumar et al. [9]
though, as no images or videos of any agent’s motion is
provided. In [8, 10], the papers provide snapshots of the
agents at different time steps of its motion, as well as videos.
The Hopper agent by Eysenbach et al. [8] shows very distinct
movement patterns, as the policy was not exposed to the
environment reward during training. Thus, changing the value
of the categorical latent variable z results in a forward or
backward movement at different speeds, although the agent
fails to keep its balance for longer than a few steps. The
Hopper agent by Osa et al. [10] was explicitly trained to
achieve a high task reward which results in all the skills
showing a forward movement. Varying the continuous or
discrete latent variables causes the Hopper agent to keep the

upper/lower knee straight or bent throughout the episode, or
influences the angle of the foot, resulting in a tip-toeing of
the agent in some cases.

VI. RELATED WORK

Related work by Sharma et al. [16] combines the model-
free approach of learning diverse skills as in Eysenbach et
al. [8] with a model-based approach. It harnesses the latent
variables and seeks to learn the skill-transition dynamics
p(s′|s, z) of the environment, in contrast to model-based
RL algorithms which learn the action-transition dynamics
p(s′|s,a). A model-predictive control planner then uses the
learned skill-transition dynamics to generate a trajectory of
skills (z1, . . . ,zn) in order to achieve a high task reward.
This combination of model-free and model-based RL allows
for a single latent-variable conditioned policy to solve multiple
tasks, while the model-predictive control algorithm only needs
to plan in the low dimensional skill space instead of the higher
dimensional action space.

VII. CONCLUSION

The three discussed approaches [8, 9, 10] train a latent-
variable conditioned policy which allows the agent to adapt
different locomotive styles. The theoretical foundation of
maximizing the mutual information between the latent
variable and the state, or state-action pair, is very similar
among the approaches. The algorithmic basis, soft actor-critic
[11], is a shared feature as well. The greatest difference
between the three papers lies in the formulation of the
maximization objectives which facilitate the diverse skill
learning. A high-level comparison is summarized in Table I.
While the policies learned in Eysenbach et al. [8] show the
most diverse skills as they aren’t directed to solve a specific
task, the agent is short-lived as no incentive is given for
survival and fails to learn the key useful skill of balance. The
skills learned in [9, 10] achieve higher task rewards simply
because they are optimized to do so, but still yield many
skills which end the episode quickly.

The skills learned in the three approaches aren’t always useful,
as the methods either don’t incentivize the performance in
the environment at all or only define a narrow incentive,

Diversity is All You
Need, Eysenbach et al. [8]

One Solution is Not All
You Need, Kumar et al. [9]

Discovering Diverse Solutions
in Deep Reinforcement
Learning, Osa et al. [10]

Algorithm base SAC [11] SAC [11] and TD3 [12]

Skill vector z Discrete values only Discrete and continuous values

Mutual information formu-
lation

Between the skill and the state, I(s;z) Between the skill and the state-action pair,
I(s,a;z)

Maximization objective maxE[R|π] max(E[R|π] + Jinfo(π,θ))

Reward Only pseudo-reward r̃(s, a) (6) Environment reward r(s, a) and
pseudo-reward r̃(s, a) (6)

Only environment reward r(s, a)

Evaluated environments Half Cheetah, Ant, Hopper Half Cheetah, Walker2d, Hopper Humanoid, Walker2d, Hopper
TABLE I

A HIGH-LEVEL COMPARISON OF THE THREE DISCUSSED APPROACHES
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such as moving forward at a specific speed. In Kumar et al.
[9] a method of testing the robustness of a learned policy
is introduced, called few-shot robustness, which is also
picked up by Osa et al. [10]. While this method is useful
for testing robustness, it is a contribution to the field of RL
in general and is not tied to skill learning. Kumar et al.
[9] raise the issue that it is unknown how many different
skills are necessary for any given task, and assume that
continuous latent variables may be the key to the answer.
Osa et al. [10] implement continuous latent variables, but the
question remains unanswered. A further open question is that
it can’t be predicted what the latent-variable vector encodes.
The diversity of the skills can only be influenced via the
hyperparameters, although these aren’t an absolute measure
for diversity, and finding the right balance between diversity
and achieved reward requires much trial-and-error.
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